

STUDENT'S NAME: _____

TEACHER'S NAME: _____

HURLSTONE AGRICULTURAL HIGH SCHOOL HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 10 minutes
- Working time 2 hours
- Write using a black or blue pen
- NESA approved calculators may be used
- A reference sheet is provided
- For questions in Section II, use the relevant booklet for writing your solutions.
- This examination paper is not to be removed from the examination centre

Total marks: 70 Section I – 10 marks (pages 2 – 4)

- Attempt Questions 1 10.
- A multiple-choice answer sheet has been provided
- Allow about 15 minutes for this section

Section II – 60 marks (pages 5 – 10)

- Attempt Questions 11 14, write your solutions in the booklets provided.
- You have been provided with 4 separate answer booklets, one for each question.
- Extra working pages are available if required.
- Allow about 1 hour and 45 minutes for this section.

Disclaimer: Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2023 HSC Mathematics Extension 1 Examination.

SECTION I (10 marks) Attempt Questions 1 - 10

Allow about 15 minutes on this section.

Use the multiple-choice answer sheet provided for Questions 1 – 10.

1. The equation $\frac{dP}{dt} = 0.4P(5000 - P)$ is used to describe the population of kangaroos in a national park.

What is the maximum population of kangaroos, according to this model?

(A)	50	(B)	2000
(C)	2500	(D)	5000

2. Given that $P = 20 + 3980e^{-kt}$ and P = 3119 when t = 1, what is the value of k?

- (A) 0.25 (B) -0.25
- (C) 0.10 (D) -0.10
- 3. Let *S* be the surface area of a sphere with radius *r*. What is the exact value of $\frac{dr}{dS}$ when r = 7 units?
 - (A) 56π (B) $\frac{7}{8\pi}$
 - (C) $\frac{8}{7\pi}$ (D) $\frac{1}{56\pi}$
- 4. A vector \overrightarrow{AB} has a magnitude of 10. When its tail is at origin it lies between the positive x -axis and positive y -axis and makes angle of 60⁰ with the x axis.

Which of the following is vector \overrightarrow{BA} ?

(A) $5\sqrt{3}\frac{i}{2} + 5\frac{j}{2}$ (B) $-5\sqrt{3}\frac{i}{2} - 5\frac{j}{2}$ (C) $5\frac{i}{2} + 5\sqrt{3}\frac{j}{2}$ (D) $-5\frac{i}{2} - 5\sqrt{3}\frac{j}{2}$

- 5. A polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ has real roots at x_1, x_2 and x_3 , which are all **distinct** values of x. Given that $P'(x_1) = 0$, $P'(x_2) = P''(x_2) = 0$ and $P'(x_3) = P''(x_3) = P'''(x_3) = 0$, what is the lowest possible degree of P(x)?
 - (A) n = 3 (B) n = 6
 - (C) n = 7 (D) n = 9

6. The equation $y = e^{ax}$ satisfies the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$.

What are the possible values of *a*?

(A) a = -2 or a = 3 (B) a = -1 or a = 6

(C)
$$a = 2 \text{ or } a = -3$$
 (D) $a = 1 \text{ or } a = -6$

7. Which of the following is the derivative of $\tan^{-1}(3x)$?

(A)
$$3\tan^{-1}x$$
 (B) $\frac{3}{1+x^2}$

(C)
$$\frac{3}{1+9x^2}$$
 (D) $3\sec^2(3x)$

- 8. A Bernoulli variable, *X*, has a value of *p* such that E(X) = 5Var(X). Given that $p \neq 0$, what is the value of *p*?
 - (A) $\frac{1}{2}$ (B) $\frac{4}{5}$
 - (C) $\frac{1}{5}$ (D) $\frac{3}{5}$

9.	Wha	t is the coefficient of x in the expansion of	$(2x^2)$	$+\frac{1}{x}\Big)^5$?
	(A)	20	(B)	40
	(C)	120	(D)	240

10. Out of a group of 10 professional tiddlywinks players, 6 are to be selected for the final round of a competition. 4 of those 6 will be placed as 1st, 2nd, 3rd and 4th.

In how many ways can this process be carried out?

(A)	$\frac{10!}{6!4!}$	(B)	<u>10!</u> 4!4!
(C)	<u>10!</u> 4!2!	(D)	<u>10!</u> 6!

~ End of Section 1 ~

SECTION II

.60 marks

Attempt Questions 11 - 14

Allow about 1 hours and 45 minutes on this section. For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations. Answer each question in a separate answer booklet.

Question 11 (15 marks) Use the Question 11 BOOKLET

(a) Water at a temperature of 24°C is placed in a freezer maintained at a temperature of -12°C. After time *t* minutes the rate of change of temperature *T* of the water is given by the formula:

$$\frac{dT}{dt} = -k(T+12)$$

where *k* is a positive constant.

- (i) Show that $T = Ae^{-kt} 12$ is a solution of this equation, where A is a constant. 1
- (ii) Find the value of A.
- (iii) After 20 minutes the temperature of the water falls to 6°C. Find to the nearest minute the time taken for the water to start freezing.
 (Freezing point of water is 0°C).
- (b) A population of 1200 feral cats is released into an area.

The rate of increase of the feral cat population is: $\frac{dP}{dt} = \frac{P}{30} \left(1 - \frac{P}{10000} \right)$, where *P* is the feral cat population and *t* is the number of months after release.

(i) Given that
$$\frac{10000}{P(10000-P)} = \frac{1}{P} + \frac{1}{10000-P}$$
 (you do not need to prove this),
solve the differential equation: $\frac{dP}{dt} = \frac{P}{30} \left(1 - \frac{P}{10000} \right)$.

(ii) Hence, find the limiting feral cat population.

Marks

1

3

1

Question 11 continued ...

1

3

(c) In the diagram, C is the centre of a circle of radius 4 cm and $\angle ACB = \theta$ radians.

The length of chord AB is l cm.

(i) Show that the length *l* of *AB* is given by
$$l = 4\sqrt{2 - 2\cos\theta}$$
.

- (ii) If θ is increasing at the rate of $\frac{2}{3}$ rad s⁻¹, find the rate of change of the length of *AB* when $\theta = \frac{\pi}{3}$ radians. Express your answer in simplified exact form.
- (d) Prove the following by using Mathematical Induction for integer values of *n*.

$$(2^{1}+2) + (2^{2}+4) + (2^{3}+6) + \dots + (2^{n}+2n) = 2^{n+1} + n(n+1) - 2$$
, for $n \ge 1$ 3

\sim End of Question 11 \sim

2023 Mathematics Extension 1 Trial Examination Section II

Question 12 (15 marks) Use the Question 12 BOOKLET

(a) The figure below shows a trapezium *ABCD*, where *AD* is parallel to *BC*.

The following information is given for this trapezium:

 $\overrightarrow{BD} = 5\underbrace{i}_{i} + \underbrace{j}_{i}, \ \overrightarrow{DC} = \underbrace{i}_{i} - 10\underbrace{j}_{i} \text{ and } \overrightarrow{AD} = 4\underbrace{i}_{i} + \underbrace{kj}_{i}, \text{ where } k \text{ is an integer.}$

(i)	Use vector algebra to find the value of <i>k</i> .	2
(ii)	Find the length of \overrightarrow{AB} .	1
(iii)	Calculate the size of angle ABD.	2

(b) A 50 kg weight is hung by a cable so that the two portions of the cable make angles of 40° and 53° , respectively, with the horizontal as shown below.

Find the magnitudes of the tension forces \vec{T} and \vec{F} in the cables if the resultant force acting on the object is zero. Give your answer in Newtons by rounding your answer to two decimal places. (use g = 9.8)

Question 12 is continued on next page ...

3

Question 12 continued ...

(c) The equation $x^3 - kx^2 + (k-1)x - (k+2) = 0$ has roots α , β and γ .

(i) Show that
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{k-1}{k+2}$$
 2

- (ii) Find the set of values of k such that $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \ge 0$ 2
- (d) Show that (n+1)[n!n+(n-1)!(2n-1)+(n-2)!(n-1)] = (n+2)! 3

~ End of Question 12 ~

Question 13 (15 marks) Use the Question 13 BOOKLET

Consider the function $f(x) = x^2 - 4x + 6$. (a)

	(i) Explain why the domain of $f(x)$ must be restricted if $f(x)$ is to have an inverse function.					
	(ii)	Given that the domain of $f(x)$ is restricted to $x \ge 2$, find an expression for $f^{-1}(x)$.	2			
	(iii)	Given the restriction in part (ii), sketch $y = f^{-1}(x)$.	2			
	(iv)	Find all points of intersection with the curve $y = f(x)$, and the curve $y = f^{-1}(x)$.	2			
(b)	By u	se of a suitable sketch, or otherwise, solve $sin^{-1}(3x + 1) = cos^{-1}x$.	3			
(c)	In a	certain school, 23% of Year 12 students study Mathematics Extension 1.				
	(i)	If <i>X</i> represents the number of students who study Mathematics Extension 1, describe the skewness of the binomial distribution for $P(X = x)$. You must give reasons for your answer.	1			
	(ii)	The Principal meets with a random sample of 60 Year 12 students, to discuss their Year 12 HSC courses.				

What is the probability that more than 30% of the students that meet with the Principal study Mathematics Extension 1?

(You may assume that the sample of students is approximately normally distributed, and make reference to the extract below from a table of *z* scores).

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177

~ End of Question 13 ~

Marks

4

2023 Mathematics Extension 1 Trial Examination Section II

Question 14 (15 marks) Use the Question 14 BOOKLET

(a) (i) Show that
$$\frac{d}{dx}(x \tan^{-1} x) = \tan^{-1} x + \frac{x}{1+x^2}$$
. 1

(ii) Hence, find the exact value of
$$\int_0^{\sqrt{3}} \tan^{-1} x \, dx$$

(b) The shaded area in the diagram below is bounded by $y = (x - 1)^2$ and y = x + 1. The area is rotated about the *x*-axis to form a solid.

Find the volume of the solid that is generated.

(c) (i) Show that the differential equation $\frac{dy}{dx} = \frac{2xy}{x^2 - 1}$ describes a family of parabolas with *x*-intercepts at (1,0) and (-1,0)

(ii) Now consider the differential equation
$$\frac{dy}{dx} = \frac{1-x^2}{2xy}$$
.
Find the equation of the curve which satisfies this differential equation and passes through the point (1,1). Express your answer as a function of *x*.

- (iii) What can be said about the gradient of the curve in part (ii) in relation to the family of curves in part (i)?
- (d) A committee of five is to be chosen from six men and seven women.
 - (i) How many committees are possible if there are no restrictions? 1
 - (ii) How many committees are possible if there are more women than men?

~ End of Question 14 ~

Marks

2

4

2

1

2

~ End of Trial Examination ~

BLANK PAGE

Nothing to see here.

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

 $l = \frac{\theta}{360} \times 2\pi r$

Area

$$A = \frac{\theta}{360} \times \pi r^2$$
$$A = \frac{h}{2} (a+b)$$

Surface area

 $A = 2\pi r^2 + 2\pi rh$ $A = 4\pi r^2$

Volume

$$V = \frac{1}{3}Ah$$
$$V = \frac{4}{3}\pi r^3$$

Functions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For
$$ax^3 + bx^2 + cx + d = 0$$
:
 $\alpha + \beta + \gamma = -\frac{b}{a}$
 $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$
and $\alpha\beta\gamma = -\frac{d}{a}$

Relations

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

Financial Mathematics

$$A = P(1+r)^{\prime}$$

Sequences and series

$$T_{n} = a + (n - 1)d$$

$$S_{n} = \frac{n}{2} [2a + (n - 1)d] = \frac{n}{2} (a + b)$$

$$T_{n} = ar^{n-1}$$

$$S_{n} = \frac{a(1 - r^{n})}{1 - r} = \frac{a(r^{n} - 1)}{r - 1} c r \neq 1$$

$$S = \frac{a}{1 - r} |r| < 1$$

Logarithmic and Exponential Functions

$$\log_a a^x = x = a^{\log_a x}$$
$$\log_a x = \frac{\log_b x}{\log_b a}$$
$$a^x = e^{x \ln a}$$

Trigonometric Functions

 $\sin A = \frac{\operatorname{opp}}{\operatorname{hyp}}, \quad \cos A = \frac{\operatorname{adj}}{\operatorname{hyp}}, \quad \tan A = \frac{\operatorname{opp}}{\operatorname{adj}}$ $A = \frac{1}{2}ab\sin C$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\frac{\sqrt{2}}{45^{\circ}}$ $\frac{\sqrt{2}}{5^{\circ}}$ $\frac{\sqrt{2}}{5^{\circ}}$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$$
$$\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$$
$$\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$$
$$\cos^2 x + \sin^2 x = 1$$

Compound angles

 $\sin(A + B) = \sin A \cos B + \cos A \sin B$ $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1 + t^2}$ $\cos A = \frac{1 - t^2}{1 + t^2}$ $\tan A = \frac{2t}{1 - t^2}$ $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$ $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\sin A \cos B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$ $\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$ $\sin^2 nx = \frac{1}{2} (1 - \cos 2nx)$ $\cos^2 nx = \frac{1}{2} (1 + \cos 2nx)$

Statistical Analysis

$$z = \frac{x - \mu}{\sigma}$$

 $\sqrt{3}$

An outlier is a score less than $Q_1 - 1.5 \times IQR$ or more than $Q_3 + 1.5 \times IQR$

Normal distribution

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between –2 and 2
- approximately 99.7% of scores have z-scores between –3 and 3

$$E(X) = \mu$$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le x) = \int_{a}^{x} f(x) dx$$
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {^{n}C_{r}p^{r}(1-p)^{n-r}}$$

$$X \sim \operatorname{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {\binom{n}{x}p^{x}(1-p)^{n-x}, x = 0, 1, \dots, n}$$

$$E(X) = np$$

$$\operatorname{Var}(X) = np(1-p)$$

HAHS Mathematics Extension 1 Trial Examination 2023

Differential Calculus

Integral Calculus

FunctionDerivative
$$\int f'(x)[f(x)]^{\mu} dx = \frac{1}{n+1}[f(x)]^{\mu+1} + c$$

where $n \neq -1$ $y = f(x)^{\alpha}$ $\frac{dy}{dx} = nf'(x)[f(x)]^{\mu-1}$ $\int f'(x)\sin f(x)dx = -\cos f(x) + c$ $y = uv$ $\frac{dy}{dx} = \frac{du}{dx} + v\frac{du}{dx}$ $\int f'(x)\sin f(x)dx = -\cos f(x) + c$ $y = g(u)$ where $u = f(x)$ $\frac{dy}{dx} = \frac{du}{dx} - u\frac{dv}{dx}$ $\int f'(x)\cos f(x)dx = \sin f(x) + c$ $y = \frac{u}{v}$ $\frac{dy}{dx} = \frac{v^{du} - u\frac{dv}{dx}}{v^2}$ $\int f'(x)\cos f(x)dx = \tan f(x) + c$ $y = \frac{u}{v}$ $\frac{dy}{dx} = f'(x)\cos f(x)$ $\int f'(x)e^{f(x)}dx = e^{f(x)} + c$ $y = \sin f(x)$ $\frac{dy}{dx} = f'(x)\cos f(x)$ $\int f'(x)e^{f(x)}dx = e^{f(x)} + c$ $y = \cos f(x)$ $\frac{dy}{dx} = -f'(x)\sin f(x)$ $\int f'(x)u^{f(x)}dx = \frac{a^{f(x)}}{1na} + c$ $y = \cos f(x)$ $\frac{dy}{dx} = f'(x)e^{f(x)}$ $\int f'(x)u^{f(x)}dx = \frac{a^{f(x)}}{1na} + c$ $y = e^{f(x)}$ $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$ $\int \frac{f'(x)}{\sqrt{a^2} - [f(x)]^2} dx = \sin^{-1}\frac{f(x)}{a} + c$ $y = \ln f(x)$ $\frac{dy}{dx} = \frac{f'(x)}{(\ln \alpha)f(x)}$ $\int \frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $y = \log_a f(x)$ $\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{dx} dx = uv - \int v\frac{du}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{dx} dx = uv - \int v\frac{du}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dv}{dx} dx = uv - \int v\frac{du}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = \frac{f'(x)}{1 - [f(x)]^2}$ $\frac{b^2}{a} = \frac{f(x)}{a} + f(b) + 2[f(x_1) + \dots + f(x_{n-1})]]$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = \frac{f'(x)}{1 - [f(x)]^2}$ $\frac{dw}{dx} = x_0$ and $b = x_0$

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

•

Vectors

$$\begin{aligned} \left| \begin{array}{c} \underline{u} \right| &= \left| \begin{array}{c} x\underline{i} + y\underline{j} \right| = \sqrt{x^2 + y^2} \\ \underline{u} \cdot \underline{v} &= \left| \begin{array}{c} \underline{u} \right| \left| \begin{array}{c} \underline{v} \right| \cos \theta = x_1 x_2 + y_1 y_2, \\ \text{where } \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \text{and } \begin{array}{c} \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \end{aligned}$$

$$r = a + \lambda b$$

Complex Numbers

$$z = a + ib = r(\cos\theta + i\sin\theta)$$
$$= re^{i\theta}$$
$$\left[r(\cos\theta + i\sin\theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$$
$$= r^n e^{in\theta}$$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$
$$x = a\sin(nt + \alpha) + c$$
$$\ddot{x} = -n^2(x - c)$$

HURLSTONE AGRICULTURAL HIGH SCHOOL 2023 Trial Higher School Certificate Examination Mathematics Extension 1

Name					Teac	cher		
Section I – Multij				– Multip	ole Choice A	nswer Sheet		
Allow about 15 minutes for this section Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.								
Sample:	2	+ 4 =	(A) A (2 つ	(B) 6 B 🔴	(C) 8 C O	(D) 9 D O	
If you think y	ou hav	e made a n	nistake, pi	ut a cross t	hrough the inco	orrect answer and fil	l in the new answer.	
			A		в 🕱	с О	d O	
If you change correct answe	e your n er by wi	nind and h riting the v	ave crosse vord corr e	ed out wha e ct and dra	t you consider wing an arrow	to be the correct ans as follows.	wer, then indicate the	
			A		B	с О	d O	
	1.	A 🔿	B 🔿	С 🔿	D 🔿			
	2.	A 🔿	В 🔿	С 🔿	D			
	3.	A 🔿	В 🔿	С 🔿	D 🔿			
	4.	A O	В 🔿	СО	D〇			
	5.	A 🔿	В 🔿	С	D〇			
	6.	A 🔿	В 🔿	С	D 🔿			
	7.	АO	ВО	СО	DO			
	8.	АO	ВО	СО	D〇			
	9.	АO	ВО	СО	DO			
	10.	A 🔿	B 🔿	СО	D			

Marking Guidelines Mathematics Extension 1 Trial Examination

Multiple Choice:

Question 1

Answer: D

Maximum can only occur when $\frac{dP}{dt} = 0$ The only non-zero answer is P = 5000

Question 2

Answer: A

Substitution and rearrangement gives: $-k = \ln \frac{3099}{3980} \rightarrow k \approx 0.25$.

Question 3

Answer: D

$$S = 4\pi r^2 \rightarrow \frac{dS}{dr} = 8\pi r \rightarrow \frac{dr}{dS} = \frac{1}{8\pi r} = \frac{1}{56\pi}$$

Question 4

Answer: D

Horizontal component of $\overrightarrow{AB} = 10cos60^o = 5$

Vertical component of $\overrightarrow{AB} = 10sin60^o = 5\sqrt{3}$

$$\overrightarrow{AB} = 5i + 5\sqrt{3}j$$

$$\therefore \overrightarrow{BA} = -5i - 5\sqrt{3}j$$

Question 5

Answer D

$$P'(x_1) = 0 \implies \therefore \text{ double zero at } x = x_1$$
$$P'''(x_3) = 0 \implies \therefore \text{ quad zero at } x = x_3$$
$$\therefore n = 2 + 3 + 3 = 9$$

 $P''(x_2) = 0 \implies \therefore$ triple zero at $x = x_2$

Question 6

Answer: C

$$a^{2}e^{ax} + ae^{ax} - 6e^{ax} = 0$$

 $e^{ax}(a^{2} + a - 6) = 0$
 $e^{ax} \neq 0, \therefore (a + 3)(a - 2) = 0$

Question 7

Answer: C

From reference sheet: $\frac{d}{dx} tan^{-1}(3x) = \frac{3}{1+(3x)^2}$

Question 8

Answer: B

Statement means: $np = 5npq \rightarrow q = \frac{1}{5} \rightarrow p = \frac{4}{5}$

Question 9

Answer B

The required term is
$$\binom{5}{3}(2x^2)^2\left(\frac{1}{x}\right)^3$$

The coefficient is
$$\frac{5!}{3!2!} \times 2^2 = 40$$

Question 10

Answer: C

First selection is of a group; second selection is an ordered one.

 ${}^{10}C_6$ followed by ${}^6P_{4:} \frac{10!}{6!4!} \times \frac{6!}{2!}$

2023 Yr12 Ext 1 Mathematics AT4 Trial ExaminationQuestion No. 11Solutions and Marking Guidelines

Outcome	Solutions	Marking Guidelines
(a)	(a) (i) $T = Ae^{-kt} - 12$ $\frac{dT}{dt} = \frac{kAe^{-kt} - k(Ae^{-kt} - 12 + 12)}{k(Ae^{-kt} - 12 + 12)}$	(a) (i) 1 mark: Correct solution.
	$\frac{dt}{dt} = -RAe^{-1} = -R(Ae^{-1} - 12 + 12)$	involved starting with the
	$= -\kappa(1 + 12)$ as required.	opposite statement and
	(ii) When $t = 0, T = 24$	integrating. Both methods
	$\therefore 24 = Ae^0 - 12$	achieved "show that".
	A = 36	(ii) 1 mark: Correct solution
	(iii) When $t = 20$, $T = 6$	(ii) I mark. Concet solution.
	$\therefore 6 = 36e^{-20k} - 12$	(iii) 3 marks: Correct solution
	$\frac{1}{2} - a^{-20k}$	showing expressions for <i>k</i> , <i>kt</i>
	$\frac{1}{2} - e$	and the final rounded answer.
	$k = \frac{-1}{20} \ln \frac{1}{2} = \frac{\ln 2}{20}$	solution.
	20 2 20 Finding t when T=0	1 mark: Considerable relevant
	$0 = 36e^{-kt} - 12$	progress.
	$\frac{1}{2} = e^{-kt} \rightarrow -kt = ln\frac{1}{2}$	<i>Note: Best answers kept k as an</i>
	3 1 1 1 $20ln3$	calculation.
(b)	$t = -\frac{1}{k} ln \frac{1}{3} = \frac{1}{k} ln 3 = \frac{1}{ln 2}$	
(6)	$t = 31 \cdot 699 \rightarrow t = 32 \min(\text{nearest min})$	
	dP - P (10000 - P)	(b) (i) 2 marks: Complete
	$\frac{dt}{dt} = \frac{1}{30} \left(\frac{10000}{10000} \right)$	solution, including correct
	$\therefore \frac{dt}{dt} = 30 \times \frac{10000}{2(10000)}$	subject of equation in terms of t
	dP = P(10000 - P)	only.
	$= 30 \left(\frac{1}{P} + \frac{1}{10000 - P} \right)$	1 mark: One aspect of the
	$t = 20 \int_{-\infty}^{\infty} \frac{1}{1} \frac{1}{1} dP$	solution fully complete.
	$t = 30 \int \frac{P}{P} + \frac{10000 - P}{10000 - P} dP$	
	$= 30 \ln \left \frac{P}{10000 - R} \right + c$	
	10000 <i>- P</i>	
	Initial conditions: $0 = 30 ln \frac{1200}{8800} + c \rightarrow c = -30 ln \frac{3}{22}$	
	$t = 20 \ln \left \begin{array}{c} 0 \\ P \\ P \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	
	$ t = 50 \text{ Im} \left \frac{-50 \text{ Im}}{10000 - P} \right _{t}^{-50 \text{ Im}} \frac{-22}{22}$	
	$30000e^{\frac{1}{30}}$	
	$\rightarrow P = \frac{1}{22 + 3e^{\frac{t}{30}}}$	
	(*)	
	(II) / 1 \	(ii) 1 mark. Correct solution
	$P = 30000 \left(\frac{1}{-t} \right)$	must come from an expression
	$\langle 22e^{\overline{30}} + 3/\rangle$	from which a limit can be
	As $t \to \infty P \to 30000 \left(\frac{1}{0+3}\right) = 10000$, which is the limiting	justified.
	population.	u marks: Answer of 10000 without evidence in (ii) or (i)
		that limit can be justified. (i.e. <i>e</i>
		raised to a positive power does
		not approach a limit.)

(c)	(c) (i) Using the cosine rule: $l^2 = 4^2 + 4^2 - 2 \times 4^2 cos\theta$ $l^2 = 32 - 32 cos\theta$ $\therefore l = 4\sqrt{2 - 2cos\theta}$	(c) (i) 1 mark: Correct solution.
	$(\mathbf{i}\mathbf{i})\frac{dl}{dt} = \frac{dl}{d\theta} \times \frac{d\theta}{dt} = \frac{d}{d\theta} \left(4(2 - 2\cos\theta)^{\frac{1}{2}} \right) \times \frac{2}{3}$ $= \left(\frac{1}{2}\right) 4(2 - 2\cos\theta)^{-\frac{1}{2}}(2\sin\theta)^{\frac{2}{3}}$ $= \frac{8\sin\theta}{3\sqrt{2 - 2\cos\theta}}$	 (ii) 3 marks: Correct solution. 2 marks: Almost all aspects of solution correct. 1 mark: Correct application of chain rule must be included in a partial solution.
	When $\theta = \frac{\pi}{3}$ $\frac{dl}{dt} = \frac{8\frac{\sqrt{3}}{2}}{3\sqrt{2-2(\frac{1}{2})}} = \frac{4\sqrt{3}}{3} \text{ cm per second}$	(d) 3 marks: Complete solution.2 marks: Almost complete
(d)	(d) <u>Step 1:</u> When $n = 1$, $LHS = 2^1 + 2(1) = 4$ $RHS = 2^2 + 1(2) - 2 = 4 + 2 - 2$ = 4 = LHS Hence true when $n = 1$.	solution with one detail of proof omitted. 1 mark: Some relevant progress. <i>Note: After the "Prove for</i>
	<u>Step 2:</u> Assume $(2^{1} + 2) + (2^{2} + 4) + \dots + (2^{k} + 2k) = 2^{k+1} + k(k+1) - 2$ Prove: $(2^{1} + 2) + (2^{2} + 4) + \dots + 2^{k+1} + 2(k+1)$ $= 2^{k+2} + (k+1)(k+2) - 2$	n=k+1" step is set up, note that the RHS still has a factor of (k+1) and a minus 2. Those who got "stuck" in the proof tended to expand or cancel these features and hence had trouble
	$LHS = 2^{k+1} + k(k+1) - 2 + 2^{k+1} + 2(k+1)$ = 2 × 2 ^{k+1} + (k + 1)(k + 2) - 2 = 2 ^{k+2} + (k + 1)(k + 2) - 2 = RHS	making LHS = RHS. Moral of the story: Look at the RHS so that you know the "destination" of your simplification.
	Statement proven by mathematical induction.	

Year 12	Mathematics Extension 1 2023	TASK 4						
Question N	o. 12 Solutions and Marking Guidelines							
Outcomes Addressed in this Question								
ME12-2 app ME11-1 use involving fu ME11-2 ma ME11-5 use counting or	ME12-2 applies concepts and techniques involving vectors and projectiles to solve problems ME11-1 uses algebraic and graphical concepts in the modelling and solving of problems involving functions and their inverses ME11-2 manipulates algebraic expressions and graphical functions to solve problem ME11-5 uses concepts of permutations and combinations to solve problems involving counting or ordering							
Part / Outcome	Solutions	Marking Guidelines						
(a)(i) ME12-2	$\frac{4i + kj}{D}$ $\frac{4i + kj}{D}$ $\frac{1}{D}$ $$	2 marks – Correct solution 1 mark – Substantially correct						
(a)(ii) ME12-2	$\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB} = 4\underline{i} + k\underline{j} - 5\underline{i} + \underline{j} = -\underline{i} - 7\underline{j}$ $ \overrightarrow{AB} = \sqrt{(-1)^2 + (-7)^2} = 5\sqrt{2}$	1 mark – Correct solution						
(a)(iii) ME12-2	$\cos(\angle ABD) = \frac{\overrightarrow{BA} \cdot \overrightarrow{BD}}{ \overrightarrow{BA} \overrightarrow{BD} }$ $\cos(\angle ABD) = \frac{(1 \times 5) + (7 \times 1)}{\left(\sqrt{(1)^2 + (7)^2}\right) \left(\sqrt{(5)^2 + (1)^2}\right)}$	2 marks – Correct solution 1 mark – Substantially correct						
	$\cos(\angle ABD) = \frac{12}{(\sqrt{50})(\sqrt{26})}$ $\angle ABD = \cos^{-1}\frac{12}{\sqrt{1300}} = 70.5599 \dots \approx 70.6^{0}$							

(d) ME 11-5	LHS= $(n + 1)[n!n + (n - 1)!(2n - 1) + (n - 2)!(n - 1)]$ = $(n + 1)[n(n - 1)!n + (n - 1)!(2n - 1) + (n - 1)!]$ = $(n + 1)[n^2(n - 1)! + (n - 1)!(2n - 1) + (n - 1)!]$ = $(n + 1)(n - 1)![n^2 + (2n - 1) + 1]$ = $(n + 1)(n - 1)![n^2 + 2n]$ = $(n + 1)(n - 1)!n(n + 2)$ = $(n + 2)(n + 1)n(n - 1)!$ =RHS	 3 marks – Correct solution 2 marks – Substantially correct solution. 1 mark – some correct working towards correct solution
----------------	---	---

I

Year 12	Mathematics Extension 1 2023	TASK 4								
Question No	b. 13 Solutions and Marking Guidelines									
	Outcomes Addressed in this Question									
ME11-1 – use	ME11-1 – uses algebraic and graphical concepts in the modelling and solving of problems involving functions and their									
inv ME11-3 – app cor	ME11-3 – applies concepts and techniques of inverse trigonometric functions and simplifying expressions involving compound angles in the solution of problems									
ME12-3 – applies advanced concepts and techniques in simplifying expressions involving compound angles and solving trigonometric equations										
ME12-5 – app	lies appropriate statistical processes to present, analyse and interpret data									
Part /	Solutions	Marking Guidelines								
Outcome										
(a)(i) ME11-1	$f(x) = x^2 - 4x + 6$ is a parabola, and <u>fails the horizontal line</u> <u>test</u> . So, the inverse of $f(x)$ over its entire domain is not a function.	1 mark – Correct solution (<i>explains using the horizontal</i> <i>line test, or one-to-one function,</i> <i>or equivalent merit</i>)								
(a)(ii)										
ME11-1	Complete the square to express $f(x)$ in vertex form:									
	$f(x) = x^2 - 4x + 6$ $(x \le 2)$									
	$=(x-2)^{-}+2$	2 marks – Correct solution								
	Swap x and y, and make y the subject:	1 mark Substantially								
		correct								
	$r = (v = 2)^2 + 2$ (v < 2)	(swaps x and v. and attempts to								
	$x = \begin{pmatrix} y & 2 \end{pmatrix} + 2 \qquad \begin{pmatrix} y & 2 \end{pmatrix}$	makes y the subject or								
	$x-2 = \left(y-2\right)^2$	equivalent merit)								
	$y = 2 = -\sqrt{r-2}$ (discard $\pm \sqrt{r-2}$ as $y \le 2$)									
	$y - z = -\sqrt{x} - z$ (discald $+\sqrt{x} - z$ as $y \le z$)									
	$y = -\sqrt{x-2} + 2$									
	$f^{-1}(x) = -\sqrt{x-2} + 2$									
	$\int (x) - \sqrt{x} + 2$									
(a)(iii)										
ME11-1										
		2 marks – Correct solution								
	•	(note the vertical tangent at $(2, 2)$)								
	$y = f^{-1}(x)$									
		1 mark – Substantially								
		correct								
	2									
	-2 0 2 4 6 8 10									

	Question 13 continued	
<pre>/ /•</pre>	Noting $y = f(x)$ and $y = f^{-1}(x)$ intersect at $y = x$,	
(a)(iv) ME11-1		2 marks – Correct solution
	solve $y = x$	
	and $y = x^2 - 4x + 6$	1 mark – significant
	so, $x = x^2 - 4x + 6$	solution
	$x^2 - 5x + 6 = 0$	note: points not awarded if no
	(x-3)(x-2) = 0	• $x=2$ is not a point
	x = 2 or 3	• $(2, 2)$ should be obvious!
	\therefore the points of intersection are (2,2) and (3,3)	
(h)		
ME11-3	Noting π π	3 marks – Correct solution
NIE 12-3	$y = \sin \left(3\lambda + 1 \right)$	2 marks – significant
	$=\sin^{-1}\left(3\left(x+\frac{1}{3}\right)\right)$	progress towards correct
	$y = \cos^{-1} x$	1 1 1
	ie dilation by $\frac{1}{3}$	towards correct solution
	shift by $-\frac{1}{2}$	Note
	3 $y = \sin^{-1}(3x+1) \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$	 the solution is for x, NOT for y.
	$\therefore x = 0$	• suggested method (graphing) is best many algebraic solutions hinted at extra solutions
(a)(b)	Since $p = 0.23 < 0.5$, where p is the probability of a student	1
(c)(l) ME12-5	studying Maths Ext 1, the graph will have a positive skew	(MUST give reason)
	(skewed to the right).	
(c)(ii)	$\mu = p = 0.23$	
ME12-5		
	$\sigma^2 = \frac{p(1-p)}{p} = \frac{0.23 \times 0.77}{p}$	4 marks – Correct solution
	n = 60	3 marks – Substantially
	= 0.0029310 $\sigma = 0.054329$	correct solution
	$v = v.v_0 + j_2 /$	2 marks – meaningful
	$x - \mu = 0.3 - 0.23$	progress towards correct
	$z = \frac{1}{\sigma} = \frac{1}{0.054329}$	solution
	= 1.28844	1 mark – partial progress
	= 1.29	towards correct solution
	p(-120) = 0.0015	(note: rounding too early gives
	P(z < 1.29) = 0.9015	incorrect/inaccurate solution)
	P(z > 1.29) = 1 - 0.9015	
	= 0.0985	

2023 Yr12 HSC Assessment Task 4	
Question 14 Solutions and Marking Guidelines	
Outcomes Addressed in this Question	
revolution	and volumes of solids of
ME12-5: applies appropriate statistical processes to present, analyse and interpret data	1
Solutions	Marking Guidelines
a i) $\frac{d}{dx}(x\tan^{-1}x) = x \times \frac{1}{1+x^2} + 1 \times \tan^{-1}x$	1 mark Correct solution with all important steps shown
$= \tan^{-1}x + \frac{x}{1+x^2}$	
ii)	
$\frac{d}{dx}(x\tan^{-1}x) = \tan^{-1}x + \frac{x}{1+x^2}$	2 marks Correct solution
$d(x \tan^{-1} x) = \tan^{-1} x dx + \frac{x}{1 + x^2} dx$	1 mark Substantial progress to correct solution
$\int_0^{\sqrt{3}} d(x \tan^{-1} x) = \int_0^{\sqrt{3}} \tan^{-1} x dx + \int_0^{\sqrt{3}} \frac{x}{1 + x^2} dx$	
$\int_0^{\sqrt{3}} \tan^{-1} x dx = \int_0^{\sqrt{3}} d(x \tan^{-1} x) - \int_0^{\sqrt{3}} \frac{x}{1 + x^2} dx$	
$= \left[x \tan^{-1} x\right]_{0}^{\sqrt{3}} - \left[\frac{1}{2}\ln 1 + x^{2} \right]_{0}^{\sqrt{3}}$	
$= \sqrt{3} \tan^{-1} \sqrt{3} - 0 - \frac{1}{2} \ln \left 1 + \sqrt{3}^2 \right + \frac{1}{2} \ln 1 + \sqrt{3} ^2$	0 ²
$=\frac{\pi\sqrt{3}}{3}-\frac{\ln 4}{2}$	

b) Intersection <i>x</i> -coordinates: $x + 1 = (x - 1)^2$	4 marks Correct solution
$x^{2} - 3x = 0$ x(x - 3) = 0 x = 0, 3 $V = \pi \int_{0}^{3} [(x + 1)^{2} - [(1 - x)^{2}]^{2}] dx$	3 marks Correctly sets up integral to find volume 2 marks Substantial progress towards solution
$= \pi \left[\frac{(x+1)^3}{3} - \frac{(x-1)^5}{5} \right]_0^3$ $= \pi \left[\frac{(3+1)^3}{3} - \frac{(3-1)^5}{5} - \frac{(0+1)^3}{3} + \frac{(0-1)^5}{5} \right]$	1 mark Some progress towards solution.
$=\frac{72\pi}{5}$	
C i) $\frac{dy}{dx} = \frac{2xy}{x^2 - 1}$ $\int \frac{dy}{y} = \int \frac{2x}{x^2 - 1} dx$ $\ln y = \ln x^2 - 1 + c$ $y = e^{\ln x^2 - 1 + c}$ $y = (x^2 - 1)e^c \text{note: } e^c = k$ $= k(x - 1)(x + 1)$	2 marks Correct solution 1 mark substantial progress towards solution.
ii) $\frac{dy}{dx} = \frac{1 - x^2}{2xy}$ $\int y dy = \frac{1}{2} \int \left(\frac{1}{x} - x\right) dx$ $\frac{y^2}{2} = \frac{1}{2} \left(\ln x - \frac{x^2}{2} + c\right)$ $y^2 = \ln x - \frac{x^2}{2} + c$	2 marks Correct solution in mod-arg form 1 mark Substantial progress to correct solution

Passes through (1,1)	
$1^2 = \ln 1 - \frac{1^2}{2} + c$	
$c = \frac{3}{2}$	
$y^2 = \ln x - \frac{x^2}{2} + \frac{3}{2}$ where $x \neq 0$	
iii) multiplying the two differential equations, we have: $\frac{2xy}{x^2 - 1} \times \frac{1 - x^2}{2xy} = \frac{-(x - 1)(x + 1)}{(x - 1)(x - 1)}$ $= -1$ Since the two are gradient functions and when multiplied the product is -1, the gradient of curve in part ii), that is the tangent, is always perpendicular to the family of curves in part i).	1 mark Valid explanation of relationship
d i) Committee of 5 from 6 males and 7 females $^{7+6}C_5 = 1287$	1 mark Correct Solution
ii) 5 female $\rightarrow {}^{7}C_{5} = 21$ 4 female, 1 male $\rightarrow {}^{7}C_{4} + {}^{6}C_{1} = 210$ 3 female, 2 male $\rightarrow {}^{7}C_{3} + {}^{6}C_{2} = 526$ Total is 21 + 210 + 525 = 756	2 marks Correct solution 1 mark Substantial progress to correct solution

Г